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* Robust pre-training

* How to make self-supervised robust pre-training
* More efficient
* More effective

e Future directions
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Gap between Al development and deployment

Develop Al-based applications Deploy Al-base applications
in an idealized environment in the wild

— Poisoning attack

Backdoor attack
Threats

(“storm”)
Distribution shift

_ Adversarial attack

Image from https://blog.si-log.net/transport-by-sea- Image from https://www.primeins.com/insurance-news/how-to-
by-land-or-by-air-the-differences-and-similarities protect-your-boat-from-a-tropical-storm-or-hurricane



Adversarial attacks

Objective: Make the model misclassify the adversarial data.
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[Goodfellow et al. 2014]
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Adversarial attacks

Objective: Make the model misclassify the adversarial data.

X = argmaxzep [x(f (X),y)

High
loss
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Random
initialization
[
x sign(VzJ(0,x,y)) L e /
A, esign(V.s/ (6, 2,1)) P\~
“panda” “nematode” “gibbon” \ X2 4
57.7% confidence 8.2% confidence 99.3 % confidence
[Goodfellow et al. 2014]
Low
| tbl loss
Natural data x + mperceP oie = Adversarial data X Image modified from https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3
adversarial
perturbation Projected gradient descent (PGD)

[Madry et al. ICLR 2018]



Supervised adversarial training (SAT)

e Minimax formulation of SAT
. 1 - ~ ~
minger ~Ni=1 *(f (Xi), y1), where X; = argmaxz,ep,x, ¥ (f (Xi), yi)

outer minimization [Madry et al. ICLR 2018] inner maximization
* Realization

Alternatively conduct steps (1) and (2):
(1) generate adversarial data maximizing the loss;
(2) minimize loss on the generated adversarial data w.r.t. model parameters.



SAT

. 1 ~ ~ ~
MiNger zZ?:l C(f (%), yi), where X; = argmaxjgiege[xi]f(f(xi), Vi)

outer minimization [Madry et al. ICLR 2018] inner maximization

* Drawback: SAT requires a large amount of labelled data (for each task).



SAT

. 1 ~ ~ ~
MiNger zZ?:l C(f (%), yi), where X; = argmaxfieBe[xi]f(f(xi)»yl')

outer minimization [Madry et al. ICLR 2018] inner maximization
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Robust pre-training

Large-scale unlabelled dataset \

E—— Models with improved
Fine-tuning generalization ability

Foundation models

Standard self-supervised pre-training /
(e.g., standard contrastive learning)




Robust pre-training

Large-scale unlabelled dataset \
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(e.g., standard contrastive learning)
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Adversarial contrastive learning (ACL)

Standard contrastive learning (e.g., SimCLR)
osim(fo (), fo (7)) /t

/ izl 0) = — 1 :
& / CL(CUk Iy, ) ue%:j} og Z esim(fe(m',;),fo(w))/t
o) ’ z€BiUBI\{z¥}
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Standard contrastive learning (e.g., SimCLR)
osim(fo (), fo (7)) /t

e , 79 = — ]. )
/ CL xk mk; ) Z 08 esim(fe(w}:),fe(x))/t

we{ig} >

x€B'UBI\{z}}

The objective function of ACL

acL(@k; 0) = (1 + w) L (@, &2 0)|+ (1 — w) - Lov (=}, 733 6),

where I, ; = argmax lon (%L, 20:0),
:i;'?EBe[a:';?]
2] €Be =]
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Outline

* How to make self-supervised robust pre-training
* More efficient



Efficient ACL
via Robustness-aware Coreset Selection (RCS)
* Why do we need to speed up ACL?

* ACL is extremely time-consuming.

Robustness transferability from CIFAR-10 to CIFAR-100

Robustness transferability from CIFAR-10 to STL10

More efficient!
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Figure 1: We learn a representation using CIFAR-10 [4] dataset (without requiring labels) via
ACL [12] and DynACL [15]. Then, we evaluate the representation’s robustness transferability to
CIFAR-100 [4] and STL10 [22] (using labels during finetuning) via standard linear finetuning. We
demonstrate the running time of robust pre-training w.r.t. different coreset selection (CS) strategies
and report the robust test accuracy under AutoAttack [17]. Experimental details are in Appendix [B.4]

More robust!

\/

3 30 25 20 15 10 5

Robust test accuracy
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Efficient ACL via RCS

* Why do we need to speed up ACL?

* ACL has not been applied to ImageNet-1K yet due to computational prohibition.

Figure 4: Robustness evaluations on the CIFAR-10 (left three panels) and CIFAR-100 (right three

panels) task. The number after the dash line denotes subset fraction & € {0.05,0.1,0.2}.
Table 1: Robustness transferability from ImageNet-1K to CIFAR-10.

Pre-training Runing time SLF ALF AFF
(hours) SA (%) RA (%) SA (%) RA (%) SA (%) RA (%)
Standard CL 147.4 84.36+0.17 0.01+001  10.00+000 10.00+0.00 86.63+0.12 49.71+0.16
ACL on entire set 650.2 - - - - - -
ACL with Random 94.3 68.75+006 15.89+006 59.57+028 27.14+019 84.75+018 50.12+0.21
ACL with RCS 111.8 70.02+0.12 22.45+013 63.94+021 31.13+0.17 85.23+023 52.21+0.14

Table 2: Robustness transferability from ImageNet-1K to CIFAR-100.

Runing time

SLF ALF AFF

Pre-training (hours) SA(%) RA(%) SA(%) RA%) SA(%)  RA (%)
Standard CL 147.4 57.34+023 0.01+o0.01 9.32+0.01 0.06+001 61.33+0.12 25.11+0.15
ACL on entire set 650.2 - - - - - -
ACL with Random 94.3 38.53+015 10.50+0.13 28.44+023 11.93+021 59.63+033 25.46+0.26
ACL with RCS 111.8 40.28+0.17 14.55+010 33.15+026 14.89+0.16 60.25+0.18 28.24+0.13
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Efficient ACL via RCS: Methodology

* |dea: Find an informative training subset
* Decreasing the number of training samples
* Preserving the robust representations



Efficient ACL via RCS: Methodology

* Intuitive solution: selects training data from the entire set whose
gradients are most beneficial to maintaining adversarial robustness.



Efficient ACL via RCS: Methodology

* Representational divergence (RD)

 The smaller the RD is, the representations are of less sensitivity to
adversarial perturbations, thus being more robust.

lrp(z;0) = d(go fo(Z),g0 fo(zx)) st. Z= a{%;n?Td(g o fo(z'), g0 fo(x))



Efficient ACL via RCS: Methodology

* Objective function of RCS

Unlabeled validation set

/
S*= argmin Lrp(U;argmin LacL(S;0))
/ SCX,|S|/1X|<k 0
t
Coreset Subset
fraction

Representational
divergence (RD)

lrp(;0) = d(go fo(Z),g0 fo(x)) st. T= arg max d(g o fo(z'), g0 fo(x))
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Efficient ACL via RCS: Methodology

* Solve the objective function of RCS
* Transformation of RCS
S*= argmin Lgrp(U;argmin LacL(S;0))
SCX,IS|/I1X|<k 0
\ One-step gradient approximation

S*= argmin Lgrp(U;0 —nVeLacL(S;0))
SCX,|S|/|X|<k
Transform into a problem of maximizing a set function

subject to a cardinality constraint

S* = argmax Gy(9)
SCX,[S[/|X|=k

GQ(S g X) = —ﬁRD(U; 0 — UVOACACL(S§9))

21



Efficient ACL via RCS: Methodology

* Solve the objective function of RCS
S* = argmax GG(S) GQ(S C X) 2 —ERD(U; 0 — UVGL:ACL(S; 9))

SCX,[S|/|X|=k

e Greedy search for solving a proxy set problem

S* = argmax Gy(S)
SCX,[S[/|X|=k

Theorem 1. We define a proxy set function G¢(S) 2 G¢(S) + |S|o, where 0 = 1 + vy + vo Ly +
NM Lo(L14+nkN(L1Ls+LyL3)), v1 — 07, and vo > 0 are positive constants. Given Assumption

Go(S) is monotone and v-weakly submodular where y > v* = g

22



Efficient ACL via RCS: Methodology

* Solve the objective function of RCS
S*= argmax Gp(S) Gy(S C X)=E —Lrp(U;0 —nVeLacr(S;0))
SCX,|S|/|X|=k
S* = argmax Gy(S)
SCX,[S]/|X|=k

* Guaranteed lower bound of the original problem by solving the proxy set problem

Theorem 2. Given a fixed parameter 0, we denote the optimal solution of Eq. as G =
SUPsCX,|S|/|X|=k Go(S). Then, S* in Eq. (6) found via greedy search satisfies

Go(S*) > Gy — (G + kNo)-e .



Efficient ACL via RCS: Methodology

* Solve the objective function of RCS
argmax Gy(S) Gy(S C X) o —Lrp(U;0 —nVeLacL(S;0))

SCX,[S|/|X|=k

S* =

e Algorithm

Algorithm 1 Robustness-aware Coreset Selection (RCS)

1:

© U A WN

Input: Unlabeled training set X, unlabeled validation set U, batch size 3, model g o fy, learning
rate for RCS 7, subset fraction & € (0, 1]

: Output: Coreset S
: Initialize S + 0
: Split entire set into minibatches X = {B,, }Dé‘l/ Al

for each minibatch B,,, € X do
Compute gradient g, < VoLacL(Bm;0)

: end for
: // Conduct greedy search via batch-wise selection
9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:

for1,...,|k|X|/B] do
Compute gradient gy < Vo Lgrp(U;0)
Initialize best_gain = —oco
for each minibatch B,,, € ){ do
Compute marginal gain G(B,,,|S) + 1g{qm
if G(Bn|S) > best_gain then
Update s < m, best_gain < G(Bn|S)
end if
end for
Update S +— SUB;, X + X \ B;
Update 6 < 0 — ngs
end for

S* = argmax Gy(S)
SCX,|S|/1X|=k

Algorithm 2 Efficient ACL via RCS

: Input: Unlabeled training set X, unlabeled validation set U, total training epochs E, learning

rate 7', batch size 3, warmup epoch w, epoch interval for executing RCS ), subset fraction &,
learning rate for RCS 7

: Qutput: Adversarially pre-trained feature extractor fy
: Initialize parameters of model g o fy
: Initialize training set S < X

fore = -
if e%\ == 0 and e > w then
S + RCS(X,U, B,go fo,n,k) //by Algorithm[T]
end if

forbatchm =1,..., [|S|/5] do
Sample a minibatch B,,, from S
Update 0 < 0 — n'VoLacL(Bm;0)
end for

: end for

24



Efficient ACL via RCS: Empirical results

* Our proposed RCS is
* more efficient (higher speed-up ratio)
* more effective (higher test accuracy)
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Figure 2: Robustness transferability from CIFAR-10 to CIFAR-100 (upper row) and STL10 (bottom
row). The number after the dash line denotes subset fraction k£ € {0.05,0.1,0.2}.
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Figure 4: Robustness evaluations on the CIFAR-10 (left three panels) and CIFAR-100 (right three
panels) task. The number after the dash line denotes subset fraction £ € {0.05,0.1,0.2}.

The upper-right (ours) is better! 25



Efficient ACL via RCS: Empirical results

* For the first time to conduct ACL on ImageNet-1K using WRN-28-10
Figure 4: Robustness evaluations on the CIFAR-10 (left three panels) and CIFAR-100 (right three

panels) task. The number after the dash line denotes subset fraction £ € {0.05,0.1,0.2}.
Table 1: Robustness transferability from ImageNet-1K to CIFAR-10.

Pre-training Runing time SLF ALF AFF
(hours) SA (%) RA (%) SA (%) RA (%) SA (%) RA (%)
Standard CL 147.4 84.36+0.17 0.01+001 10.00+000 10.00+0.00 86.63+0.12 49.71+0.16
ACL on entire set 650.2 - - - - - -
ACL with Random 94.3 68.75+006 15.89+006 59.57+028 27.14+0.19 84.75+018 50.12+0.21
ACL with RCS 111.8 70.02+0.12 22.45+013 63.94+021 31.13+0.17 85.23+023 52.21+0.14
Table 2: Robustness transferability from ImageNet-1K to CIFAR-100.
Pre-training Runing time SLF ALF AFF
(hours) SA (%) RA (%) SA (%) RA (%) SA (%) RA (%)
Standard CL 147.4 57.34+023 0.01+o0.01 9.32+0.01 0.06+001 61.33+0.12 25.11+0.15
ACL on entire set 650.2 - - - - - -
ACL with Random 94.3 38.53+0.15 10.50+0.13 28.44+023 11.93+021 59.63+033 25.46+0.26
ACL with RCS 111.8 40.28+0.17 14.55+010 33.15+026 14.89+0.16 60.25+0.18 28.24+0.13
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Efficient ACL via RCS: Empirical results

Table 18: Standard transferability [43] of adversarially pre-trained ResNet-50 from ImageNet-1K to
CIFAR-10 and CIFAR-100, respectively. We report the standard test accuracy (%) via standard linear
finetuning (SLF) and standard full finetuning (SFF). The number after the dash line denotes subset

* RCS for speeding up SAT on ImageNet-1K  sacion ¢ (005.01,02).

Protaining Runing tme | CIFAR-10  CIFAR-100
. . (hoursy | SLF SFF SLF  SFF
( supervise d settin g) Standard training [43] on entire set - 7884 9741 57.00 8421
SAT [43] on entire set 2861 | 9353 98.09 7729 86.99
PY 1 1Nt 1 Fast-AT [20] on entire set 10.4 9091 97.54 73.35 83.33
Maintaining stan dard transferabil Ity SAT with Random-0.05 387 8572 9527 699 8234
SAT with RCS-0.05 482 92.68 97.65 7535 84.71
SAT with Random-0.1 4538 8§7.14 95.60 7123 83.62
SAT with RCS-0.1 55.4 9292 97.82 7541 85.22
SAT with Random-0.2 70.3 8760 9610 72.05 84.14
SAT with RCS-0.2 798 | 9348 98.06 7639 85.44

Table 16: Robustness transferability of adversarially pre-trained WRN-28-10 from ImageNet-1K to
CIFAR-10. Here, “RA” stands for robust test accuracy under PGD-20 attacks following the setting
of Hendrycks et al. [51]. The number after the dash line denotes subset fraction k& € {0.05,0.1,0.2}.

Pre-training Runing time ALF AFF
(hours) SA (%) RA (%) SA (%) RA (%)
Standard training on entire set 66.7 10.12 10.04 84.73 51.91
° i N ith SAT [51] on entire set 341.7 85.90 50.89 89.35 59.68
Ma | ntaln I ng rObUStneSS tranSfe ra bl I Ity SAT with Random-0.05 53.6 69.59 31.58 85.55 53.53
SAT with RCS-0.05 68.6 79.72 44.44 87.99 56.87
SAT with Random-0.1 70.2 73.28 33.86 86.78 54.95
SAT with RCS-0.1 81.9 81.92 45.10 88.87 57.69
SAT with Random-0.2 103.4 75.46 39.62 86.64 56.46
SAT with RCS-0.2 121.9 83.94 46.88 89.54 58.13
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Efficient ACL via RCS: Conclusions

* We proposed robustness-aware coreset selection (RCS) that can
* speed up (supervised and self-supervised) robust pre-training
* maintain (standard and robustness) transferability

28
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* How to make self-supervised robust pre-training

* More effective



Effective ACL
via adversarial invariant regularization (AIR)

* Motivation

* The style-independence property of learned representations, which
eliminates the effects of nuisance style factors in standard contrastive
learning (SCL), has been shown to significantly improve the transferability of

KNN
Algorithm Shorthand = Paper
accuracy
Bootstrap Your Own Latent: A new approach to self-supervised .
X BYOL arXiv 80.09
Learning
Representation Learning via Invariant Causal Mechanisms ReLIC arXiv 79.26 P
erformance evaluated on CIFAR-10
A Simple Framework for Contrastive Learning of Visual . .
Representations SimCLR arXiv 77.79
Image from https://github.com/NightShade99/Self-Supervised-Vision
Unsupervised Learning of Visual Features by Contrasting Cluster .
. SWAV arXiv 7211
Assignments
Momentum Contrast for Unsupervised Visual Representation .
. MoCo arXiv 63.14
Learning
Barlow Twins: Self-Supervised Learning via Redundancy Reduction Barlow arXiv 56.81

[Mitrovic et al., ICLR 2021] 30



Effective ACL via AIR

* Motivation

* The style-independence property of learned representations, which
eliminates the effects of nuisance style factors in standard contrastive
learning (SCL), has been shown to improve the transferability of
representations.

It is unclear how the style-independence property benefits ACL-learned
robust representations.

31



Effective ACL via AIR : Methodology

. . . lacL(zk;0) = (1 + w) -ECL(:Ek,:ck,H) + (1 - w) - Lon(zh,27;6),
[ J
ACL in the view of causality where 24} = argms Lo 5450,
1 €EBelzy]

kEBe[ k]

Data generation @
procedure \

Learning procedure

Standard contrastive learning Adversarial contrastive learning
Figure 1: Causal graph of standard contrastive learning [35] (left panel) and adversarial contrastive
learning (right panel). x is unlabeled data, s is style variable, c is content variable, Z is the generated
adversarial data, and 6 is the parameter of representation. The dashdotted lines denote that the proxy
label y© € Y2 is a refinement of the target label y; € Y = {y; le. All other arrows are causal.

32



Effective ACL via AIR : Methodology

. . . lacL(zk;0) = (1 + w) -ECL(:Ek,:ck,H) + (1 - w) - Lon(zh,27;6),
[ J
ACL in the view of causality where 24} = argms Lo 5450,
1 €EBelzy]

kEBe[ k]

Data generation @
procedure \

Learning procedure

Standard contrastive learning Adversarial contrastive learning
Figure 1: Causal graph of standard contrastive learning [35] (left panel) and adversarial contrastive
learning (right panel). x is unlabeled data, s is style variable, c is content variable, Z is the generated
adversarial data, and 6 is the parameter of representation. The dashdotted lines denote that the proxy
label y© € Y2 is a refinement of the target label y; € Y = {y; le. All other arrows are causal.

The rationality of Theorem 1. The learning objective of the proxy task used in ACL which is to maximize the conditional

probability both p(yT|z) and p(y?|Z) is equivalent to the learning objective of ACL [26] which is to
the causal graph

minimize the sum of standard and adversarial contrastive losses. 33
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¢
Learning procedure
» Adversarial invariant regularization (AIR) ®=

Adversarial contrastive learning

* The conditional probability learned via ACL
p(y'x) = p(y"|Z)p(Z|x)
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Fffective ACL via AIR: Methodology WY

Y7 \
Learning procedure l / T

Adversarial contrastive learning

» Adversarial invariant regularization (AIR)

p(y"|z) = p(y"|Z)p(Z|z)
» Style-independent criterion

pdo(n)(lef)pdo(Ti)(félw) — de(’Tj)(yR|£)de(Tj)(i|x) VTi,Tj c T,

sim(fs (2), fo (3*)) /¢ sim(fo (8%), fo (z)) /1
o(T ~ € o(Ty) ( ~ €
p®(m) (yF|7) = p(m)(z|z) =

3 osim(fo(zk),fo (&) /t 3 esim(fo(&1),fo(z})) /t
rL€B rLE€B
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Fffective ACL via AIR: Methodology ™~ L./ @
©,
Learning procedure l T

b=

—

» Adversarial invariant regularization (AIR)

Adversarial contrastive learning

p(y"|z) = p(y"|2)p(Z|z)

p) (yR|2)p? ) (&]a) = p®) (y*|2)p™ ) (E|z) Vmi T €T,

* Loss function of AIR
Lam(B;0) = KL (p%) (yR|5)p% (3]2) |p*™) (4™ 2)p™ ") (3]2); B)

esim(fo (2),fo (5")) /1 esim(fo(5%),fo(s)) 1

p®(m) (yF|7) = p(m)(z|z) =

3 osim(fo(zk),fo (&) /t > esim(fo (&}),fo () /t
rLE€EB rL€EB
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Fffective ACL via AIR: Methodology ™~ L./ @
©,
Learning procedure l T

b=

» Adversarial invariant regularization (AIR)

Adversarial contrastive learning

R R\~
p(y~|z) = p(y 7 |Z)p\w s
pdo(ﬁ)(yR|ZI~7)pdo(Ti)(if|.’13) — de(Tj)(lei)de(Tj)(i|x) \VITi,Tj c 7-7

Lam(B;0) = KL (p™) (y"[2)p ™) (&) [ (y"|&)p* ) (&[2); B)

e Standard invariant regularization (SIR): a special case of AIR

Lswr(B;0) = KL (p™ (y"a) [p**) (y"|2); B)
esim(fo(z),fo(z%))/1

> esim(fo(zx), fo(2})) /t
rL€EB

where p@°() (yf|z) =

Vu € {i,J}
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Fffective ACL via AIR: Methodology \ / o)

®
Learning procedure é /

Adversarial contrastive learning

» Adversarial invariant regularization (AIR)

R R{z\m(
p(y*lz) = p(y"*|2)p(Z|x)
p®°() (yB|2)p® ) (3|2) = p®™) (yB|2)p® ) (z|z) Vr, T €T,
Lam(B;0) = KL (p™) (y"[2)p ™) (&) [ (y"|&)p* ) (&[2); B)

Lstr(B;0) = KL (p7) (y ") [p™) (y"|2); B)

e Our proposed invariant regularization (IR)

arg min Z lacy(x;0) + )\1 Lsir(U;0) + Ao - Lar(U;0),
0 zeU g

invariant regularlzatlon
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Effective ACL via AIR: Theoretical analysis

* Theoretical justification of the effectiveness
* The style-independence property is generalizable to the downstream tasks

Proposition 4. Let ) = {y;}]_, be a label set of a downstream classification task, Y be a
refinement of Y, and T be the adversarial data generated on the downstream task. Assuming that
T € Be[x] and T, € B.[z], we have the following results:

p® (yF|z) = p® (y|7) = p® (i) = p* U (yelZ) Vi €T,

p®(™)(3|z) = po(™) (&) = p®°(™) (#4|z) = p® () (&4s]2) Vri,T; €T



Effective ACL via AIR: Theoretical analysis

* Theoretical justification of the effectiveness
* The style-independence property is generalizable to the downstream tasks

Proposition 4. Let ) = {y;}]_, be a label set of a downstream classification task, Y be a
refinement of Y, and T be the adversarial data generated on the downstream task. Assuming that
T € Be[x] and T, € B.[z], we have the following results:

p®(m) (yF|z) = p@°() (yB|3) = p®™) (y,|2;) = p®() (y4|3:) V7,7 €T,
p®)(&|z) = p?(™)(F|2) = p¥") (&s|z) = p*7) (&slz) Vm, T €T

* We can treat adversarial attacks and common corruptions as style factors
* IR regulates the representations to be invariant of style factors



Effective ACL via AIR: Experimental results

* Performance evaluated on various
tasks

* Performance evaluated via various
fine-tuning methods

* Robustness under common
corruption

Table 1: Robustness evaluations via SLF across various tasks.

Pre-training A CIFAR-10 CIFAR-100 STL10
AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)

ACL [26] 0.0 0.0 | 37.39+006 78.27+009 15.78+0.05 45.70+009 35.80+006 67.90+0.09
ACL with SIR [35] 0.5 0.0 | 37.51+004 78.97+008 15.76+006 47.16+011 36.36+009 68.09+0.13
ACL with AIR 0.0 0.5 | 38.70+009 79.96+005 16.03+0.12 49.60+0.15 36.86+008 68.61+0.10
ACL with IR 0.5 0.5 | 38.89+006 80.03+007 16.14+007 49.75+010 36.94+006 68.91+0.07
DynACL [19] 0.0 0.0 | 45.05+004 75.39+005 19.31+006 45.67+009 46.49+005 69.59+0.08
DynACL with SIR [35] | 0.5 0.0 | 44.70+003 76.45+006 19.67+0.09 46.13+010 46.56+008 70.41+0.09
DynACL with AIR 0.0 0.5 | 4523+008 78.01+011 20.37+008 46.77+0.11 47.62+007 71.98+0.12
DynACL with IR 0.5 0.5 | 45.27+004 78.08+006 20.45+007 46.84+0.12 47.66+006 72.30+0.10

Table 2: Robustness benchmark on the CIFAR-10 task evaluated via SLF, ALF, and AFF.

Pre-training A Ao SLE ALF AFF

AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)
ACL [26] 0.0 0.0 | 37.39+006 78.27+009 40.61+007 75.56+009 49.42+007 82.14+0.18
ACL with SIR [35] 0.5 0.0 | 37.51+004 78.97+008 40.30+008 76.49+005 50.36+007 82.62+0.08
ACL with AIR 0.0 0.5 | 38.70+009 79.96+005 41.09+006 77.99+012 50.32+009 82.67+0.09
ACL with IR 0.5 0.5 | 38.89+006 80.03+007 41.39+008 78.29+0.10 50.44+004 82.71+0.06
DynACL [33] 0.0 0.0 | 45.05+004 75.39+005 45.65+005 72.90+008 50.52+005 81.86+0.11
DynACL with SIR [35] | 0.5 0.0 | 44.70+003 76.45+006 45.42+010 74.78+014 50.58+007 81.66+0.18
DynACL with AIR 0.0 0.5 | 4523+008 78.01+011 46.12+009 77.01+0.12 50.66+005 82.62+0.10
DynACL with IR 0.5 0.5 | 45.27+004 78.08+006 46.14+0.07 77.42+010 50.68+008 82.74+0.11

Table 3: Test accuracy (%) evaluated on CIFAR-10-C (corruption severity ranges from 1 to 5) of
CIFAR-10 pre-trained models after SLF and AFF, respectively. Standard deviation is in Table 20

Pre-training A1 As SLF AFF
CS-1 CS-2 CS-3 CS4 CS5|CS1 CS2 (CS3 CS4 CS-5
ACL [26] 0.0 0.0 7657 7473 71.78 67.75 6278 | 79.15 76.01 7254 69.47 65.27
ACL with SIR [35] 0.5 0.0 | 7731 7546 7221 68.14 63.27 | 79.05 7629 7273 69.43 6529
ACL with AIR 0.0 0.5 | 7830 7634 7327 69.10 6424 | 7924 76.54 72.81 69.64 65.32
ACL with IR 0.5 05| 7855 76.67 7333 69.12 64.28 | 7949 7686 7295 69.73 65.37
DynACL [33] 0.0 0.0 7392 71.69 69.01 6622 6251 | 79.77 7644 7295 69.74 65.60
DynACL with SIR [35] | 0.5 0.0 | 75.81 72.88 69.31 6624 6220 | 80.59 77.31 73.67 70.39 66.05
DynACL with AIR 0.0 0.5 7633 7346 6997 67.19 63.13 | 8093 77.71 74.11 70.81 66.58
DynACL with IR 0.5 05 |76.62 73.62 7016 67.37 63.29 | 8098 7787 7431 70.96 66.75

41



Effective ACL via AIR: Conclusions

* We proposed an invariant regularization that can
* regulate (both standard and robust) representations to be style-independent

* improve both generalization ability and robustness transferability against
adversarial attacks and common corruptions
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Thank you for your attention!

* Summary
* More efficient robust pre-training via robustness-aware coreset selection
* More effective robust pre-training via adversarial invariant regularization

e Future directions

* The application of robust foundation models in computer vision tasks
* Segmentation
* Point cloud classification
 Human-object interaction detection

* The potential of robust self-supervised pre-training in building robust
language foundation models



