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Security Risk---Adversarial Attack

N-CRiPT Seminar Presentation by Xilie Xu 6

Image from https://gradientscience.org/intro_adversarial/

Natural data 𝑥 Imperceptible
adversarial
perturbation

Adversarial data "𝑥  + =



Security Risk---Adversarial Attack 
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Medical diagnosis

[Henrya et al., ArXiv 2022]

Traffic sign recognition

Image from https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.itm-p.com%2Fprotect-iot-
applications-from-adversarial-evasion-
attacks&psig=AOvVaw2ltdTWXQ51FptX2EFu9gKr&ust=1700842535801000&source=images&cd=vfe&
opi=89978449&ved=0CBQQjhxqFwoTCJidm6vC2oIDFQAAAAAdAAAAABAJ

Potential security risks when applying foundation models to safety-critical tasks



Risks Urge Robust Foundation Models
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Robust foundation models should:
1. be generalizable to downstream tasks;
2. be robust against adversarial attacks.
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Robust foundation models should:
1. be generalizable to downstream tasks;
2. be robust against adversarial attacks.
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Robust
foundation models Fine-tuning

(Large-scale) unlabeled datasets

Pre-training

Robust self-supervised learning
(e.g., Adversarial Contrastive Learning)

Improved generalization ability 
and adversarial robustness in 

downstream tasks
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Adversarial Contrastive Learning (ACL)
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Adversarial Contrastive Learning𝑥!"
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Data augmentations
 𝜏"  and 𝜏#  

Natural 
views

Adversarial 
views

Original 
views

At each epoch, the ACL alternatively conducts Step (1) and (2):

Step (1): Generating adversarial views
Step (2): Updating parameters via minimizing the contrastive loss 
on the natural views and adversarial views.
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Motivation: ACL is inefficient due to 𝑇 PGD steps
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ACL on the entire training set is extremely time-consuming.
• CIFAR-10: about 43 hours 
• ImageNet-1K: about 650 hours

Random
initialization

!𝑥!

!𝑥"

Image modified from https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

Project Gradient Descent (PGD)
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Project Gradient Descent (PGD)

How can we speed up ACL?



Robustness-Aware Coreset Selection (RCS)
• Intuitive idea: Find an informative training subset (called “coreset”) 

• Decreasing the number of  training samples
• Guaranteeing the model to effectively learn robust representations
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Image from https://medium.com/analytics-vidhya/sampling-statistical-approach-in-machine-learning-4903c40ebf86

Entire set Coreset

Robust foundation model
An effective robust 
foundation model

Select 
informative data 

Efficient ACL on coreset

ACL on entire set

Coreset has fewer 
training data



Robustness-Aware Coreset Selection (RCS)
• Intuitive idea: Find an informative training subset (called “coreset”) 
• Objective function of RCS
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Representational 
divergence (RD)
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RD, without using labels, measures the adversarial robustness.



• Intuitive idea: Find an informative training subset (called “coreset”) 
• Objective function of RCS

Robustness-Aware Coreset Selection (RCS)
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Coreset
Subset 
fraction

Representational 
divergence (RD)

Unlabeled validation set
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Adversarial 
contrastive loss

RD, without using labels, measures the adversarial robustness.

Training on 
coreset

Effectively obtain 
adversarial robustness

Achieve the 
minimized RD



RCS is a problem of set function maximization
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One-step gradient approximation

Transform into a problem of maximizing a set function 
subject to a constraint on the size of the set

N-CRiPT Seminar Presentation by Xilie Xu

Set function



RCS via greedy search

RCS greedily finds and adds the data which has the 
largest marginal grain into the coreset.
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Derived via Taylor expansion

Marginal gain = Similarity (validation loss gradient, training loss gradient) 
Training on the 
selected data

Most beneficial in 
optimizing RD

More adversarially robust



Algorithm: Efficient ACL via RCS
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Algorithm: Efficient ACL via RCS
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Whether the greedy search provide any 
optimality guarantee theoretically?



Theoretical analysis: 
greedy search has an optimality guarantee
• Proof sketch using a proxy set problem
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Guaranteed lower bound of the original set 
problem using the proxy coreset

1. Monotonicity

2. γ∗-submodularity---diminishing returns

More data have diminishing gains for learning 
representations

More data, better representation in terms of robustness

Guaranteed Lower boundProxy coreset selected 
via greedy search based 
on the proxy marginal 
gain

Proxy 
coreset 



Theoretical analysis: 
greedy search has an optimality guarantee
• Proof sketch using a proxy set problem

25N-CRiPT Seminar Presentation by Xilie Xu

Can be discarded since it is a constant

The proxy coreset provides 
a guaranteed lower bound!the proxy marginal gain

Our greedy search via 
the original marginal gain

Approximate



Empirical Results
RCS is more efficient (higher speed-up ratio) compared to ACL on the entire set.
RCS is more effective (higher test accuracy) compared to random selection.
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The upper-right (ours) is better!
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Effectiveness

Efficiency



Empirical Results

For the first time to conduct ACL on ImageNet-1K using WRN-28-10
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We prove the possibility of applying ACL on large-scale datasets.



Empirical Results
RCS for speeding up supervised adversarial training (SAT) on ImageNet-1K 

while maintaining robustness transferability.
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RCS is also applicable to robust supervised pre-training!
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Motivation

• Limited robustness transferability to downstream tasks
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How can we improve ACL’s robustness transferability? 
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Causal View of ACL
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𝑥

Standard contrastive learning

𝑠 𝑐

Style 
factor

Content 
factor

Natural view

Data generation 
procedure

𝑠 𝑐

Adversarial contrastive learning

𝑥

%𝑥 θAdversarial view

The generation of adversarial 
data does not use labels. 



Causal View of ACL
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𝑥 𝑦$

Standard contrastive learning

𝑠 𝑐

𝑦%

𝑦&

Data generation 
procedure

𝑥

θ

Adversarial contrastive learning

𝑠 𝑐

𝑦%

𝑦&

%𝑥

⋮ ⋮

The proxy label 𝑦$ 	is 
the refinement of 𝑦'.

𝑦$

Dog

Golden Retriever
with yellow hair

Labrador Retriever
with black hair

Target label 𝑦!Proxy label 𝑦"

Learning procedure

Target labels from an 
unknown downstream task
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Causal View of ACL
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Style-invariant criterion: The intervention on the style factor should not affect the conditional probability



Adversarial Invariant Regularization (AIR)

• The conditional probability learned via ACL the mild assumption of Markov condition
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Adversarial Invariant Regularization (AIR)

• The conditional probability learned via ACL
• Style-independent criterion: The intervention on the style factor 

should not affect the conditional probability
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Adversarial Invariant Regularization (AIR)

• The conditional probability learned via ACL
• Style-independent criterion: The intervention on the style factor should 

not affect the conditional probability

• Loss function of AIR -> to enforce style-independence
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Understanding of AIR
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AIR enforces self-consistency 
to be cross-consistent
under different augmentations

the self-consistency 
among the different views

original view
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Algorithm: Enhancing ACL via AIR 
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𝜖 > 0:Regulate robust 
representations

𝜖 = 0: Regulate standard 
representations



AIR achieves SOTA robustness transferability 
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AIR achieves SOTA robustness transferability 
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• Robustness transferability via automated robust fine-tuning 
• AutoLoRa: an automated and parameter-free robust fine-tuning framework

N-CRiPT Seminar Presentation by Xilie XuXu, Xilie, Jingfeng Zhang, and Mohan Kankanhalli. "Autolora: A parameter-free 
automated robust fine-tuning framework." arXiv preprint arXiv:2310.01818 (2023).



AIR ranks First in RobustSSL Benchmark
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Robust Self-Supervised Learning
(RobustSSL) Benchmark

https://robustssl.github.io

https://robustssl.github.io/


Thank you for your attention!
• Summary

• With RCS and AIR, we can efficiently build effective robust foundation models!

• Potential future directions
• Explore the potential applications of ACL in various CV, NLP, and multi-modal tasks.
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