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Security Risk---Adversarial Attack
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Security Risk---Adversarial Attack

Potential security risks when applying foundation models to safety-critical tasks

Medical diagnosis Traffic sign recognition

(b1)

Human: 100.0 % stop sign Human: 100.0 % stop sign
Machine: 99.7 % stop sign Machine: 0.9 % stop sign

(b2)

Image from https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.itm-p.com%2Fprotect-iot-
- - applications-from-adversarial-evasion-

. attacks&psig=AOvVaw2ltdTWXQ51FptX2EFu9gKr&ust=1700842535801000&source=images&cd=vfe&
[Henrya et al., ArXiv 2022] 0pi=899784498&ved=0CBQQjhxqFwoTClidm6vC20IDFQAAAAAIAAAAABA)
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Risks Urge Robust Foundation Models

Robust foundation models should:
1. be generalizable to downstream tasks;
2. be robust against adversarial attacks.
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Adversarial Contrastive Learning (ACL)

Data augmentations
T; and Tj

Standard Contrastive Learning

osim(fo(ak), fo () /¢
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Original Natural
views views
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Adversarial Contrastive Learning (ACL)

Data augmentations
T; and Tj

Lo (8L, 57;0) + (1 — w) Low(zt, x;0),

— 3
T, T), = argmax lon(Zy, 233 0),
2} €Be[z}]
&) €Be[x],]

Original Natural Adversarial At each epoch, the ACL alternatively conducts Step (1) and (2):
views views views

Step (1): Generating adversarial views
Step (2): Updating parameters via minimizing the contrastive loss
on the natural views and adversarial views.
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Motivation: ACL is inefficient due to T PGD steps

Xk i(t+1) i(t : AORRAG)
wk( )_HBe[mf;(“)] (mk( ) 4 p- slgn(VmZ,(t)ECL(wk ,z3))
| e}V =Ty 0, (2" + p - sign(V ot 21 ))
\ i Project Gradient Descent (PGD)
T PGD steps X, High
ACL on the entire training set is extremely time-consuming.
* CIFAR-10: about 43 hours Béhdgm./
L4 ImagENet-lKI abOUt 650 hours > Inlt|a||zai|/o

loss
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Motivation: ACL is inefficient due to T PGD steps

. mi,(t—i_l) :HBe[wi’(O)] (w{;(t) TP Sign(vwi’(t)KCL (mz’(t)’ w%(t)))
\ . Project Gradient Descent (PGD)
T PGD steps X, i
ACL on the entire training set is extremely time-consuming.
* CIFAR-10: about 43 hours Béhdgm./
L4 ImagENet-lKI abOUt 650 hours > Inlt|a||zai|/o
How can we speed up ACL?

loss
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Robustness-Aware Coreset Selection (RCS)

* Intuitive idea: Find an informative training subset (called “coreset”)
* Decreasing the number of training samples
* Guaranteeing the model to effectively learn robust representations

—
Select

informative data P kg

EERE. -
K I | \ Coreset has fewer

A r f ,' training data

~\ 7
~ -

Efficient ACL on coreset

ACL on entire set ﬂ

Vv
Robust f dati del An effective robust
obust foundation mode foundation model

Image from https://medium.com/analytics-vidhya/sampling-statistical-approach-in-machine-learning-4903c40ebf86



Robustness-Aware Coreset Selection (RCS)

* Objective function of RCS

ACLon CIFAR-10 SLF on CIFAR-10 SLF on CIFAR-10
:',RD loss (lower is better)\ESA (%) :', RA (%) E

Entire 20.1243 578.87 i 39.19 i

Random-0.05  10.3357 167.45 | 2296 !

______________________

Representational
divergence (RD)

lrp(z;0) = d(go fo(Z),g0 fo(x)) st. Z= arg max d(go fo(z'), g0 fo(x))

RD, without using labels, measures the adversarial robustness.
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Robustness-Aware Coreset Selection (RCS)

* Objective function of RCS .
raining on
Subset

Cores\e’i fraction lfwed validation set 8(S) = argominEACL(S; 8)
S* = argmin LCRD(U; 6(S)) ﬂ
SCX,|S|/|X|=k +——___ Representational _
divergence (RD)
6(S) = arg mmEACL(S 6), —
T Adversarial Sgﬁ%ﬁiﬁzkcmw; o)
contrastive loss ﬂ
lrp(z;0) = d(go fo(%),g0 fo(z)) st. & =argmaxd(go fo(z'),g0 fo(z))

@' €Bela] Effectively obtain
RD, without using labels, measures the adversarial robustness. adversarial robustness



RCS is a problem of set function maximization

0(S) = argaminLACL(S; 6)
S* = argmin LRD(U, 0(5)) > Gg(S g X) £ —ERD(U; 9(5)) = —LRD(U;H - ’I’]VQLACL(S; 9))

SCX,IS|/|1X|=k Set function \ Y 4

One-step gradient approximation

S* = argmax Gy(S)
SCX,|S|/|X|=k

Transform into a problem of maximizing a set function
subject to a constraint on the size of the set
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RCS via greedy search

RCS greedily finds and adds the data which has the

largest marginal grain into the coreset.

l

Go(z | 8) = Go(S U {z}) — Go(S)
= —Lrp(U;0 —nVeLacL(S;0) —nVeLacL({z};0))
Derived via Taylor expansion C +Lrp(U; 0 — nVoLacL(S;6))
~ —(Lrp(U;0 — nVeLacL(S;0)) — nVeLrp(U; 0s) ' VoLacL({x};0) + £)
+Lrp(U; 0 —nVeLacwL(S;0))
~ T}[Voﬁnv(U; 0 —nVoLacL(S;9)) [VeLacL({z};0)
Marginal gain = Similarity (validation loss gradient, training loss gradient)

More adversarially robust <= Most beneficial in ¢======= Training on the

optimizing RD selected data
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Algorithm: Efficient ACL via RCS

e Step 1 (Warm up): Warm up training on entire training set to find a better starting point fjy.

Training epochs

—0 1 1T 1T 1 1

Warm up periods
RCS selection at every few epochs
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Algorithm: Efficient ACL via RCS

e Step 1 (Warm up): Warm up training on entire training set to find a better starting point fjy.

o Step 2.1 (RCS): S <+ 0. 8’ < 6. Compute gradients
Q < {qr = VoLacL(zk; 0) | Vi, € X} onunlabeled training dataset X

e Step 2.2 (RCS): Compute gradients qy < V¢ Lrp(U;@') on unlabeled validation dataset
U.

« Step 2.3 (RCS): Select a data %, whose gradient gz matches best with q, i.e.,
argmax,{g] qv}. Gy(z | )

o Step2.4 (RCS): S «+— SU{zi}, X «+ X\ {zx}, 0 + 0 —7n/qs.

Training epochs

« Step 2.5 (RCS): Repeat Step2.2-23until | S| / | X |= k. - I I I I ] ]

Warm up periods
RCS selection at every few epochs

N-CRiPT Seminar Presentation by Xilie Xu 21



Algorithm: Efficient ACL via RCS

e Step 1 (Warm up): Warm up training on entire training set to find a better starting point fjy.

o Step 2.1 (RCS): S <+ 0. 8’ < 6. Compute gradients
Q < {qr = VoLacL(zk; 0) | Vi, € X} onunlabeled training dataset X

° Step 2.2 (RCS) Compute gradlents qU <_ VOERD(U; 0,) on unlabeled Valldation dataset el & % 8 8 8 8 S E S SESEESENEESESESSENENANNENENNENEENENEENENANAENESENNANANEENENEENENERREES

— Training cost of ACL with RCS
U_ ------ Training cost of original ACL

------ Training cost of ACL with Random subset selection

1 RCS
I—l Training cost overhead by RCS

« Step 2.3 (RCS): Select a data %, whose gradient gz matches best with q, i.e.,
argmax,{g] qv}. Gy(z | )

[.1 [] [.]

o Step2.4 (RCS): S «+— SU{zi}, X «+ X\ {zx}, 0 + 0 —7n/qs.

Training epochs

» Step 2.5 (RCS): Repeat Step 2.2-2.3until | S| / | X |= k. - I I I I ] I

Warm up periods

« Step 3 (ACL training): Update parameters 6 <— 8 — nV gL acL(S; 0) RCS selection at every few epochs

e Step 4: Every I epochs, go to Step 2.1 to generate a new coreset; otherwise go to Step 3 to
update model parameters. The algorithm stops when reaches the final training epoch.
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Algorithm: Efficient ACL via RCS

e Step 1 (Warm up): Warm up training on entire training set to find a better starting point fjy.

« Step 2.1 (RCS): S <— 0. 0" < 6. Compute gradients Whether the greedy search provide any
Q < {ar = VoLacL(xr; 0) | Vi € X} on unlabeled training dataset X.. optimality guarantee theoretically?

° Step 2.2 (RCS) Compute gradlents qU <_ VOERD(U; 0,) on unlabeled Valldation dataset el & % 8 8 8 8 S E S SESEESENEESESESSENENANNENENNENEENENEENENANAENESENNANANEENENEENENERREES

— Training cost of ACL with RCS
U_ ------ Training cost of original ACL

------ Training cost of ACL with Random subset selection

1 RCS
I—l Training cost overhead by RCS

« Step 2.3 (RCS): Select a data %, whose gradient gz matches best with q, i.e.,
argmax,{g] qv}. Gy(z | )

[.1 [] [.]

o Step2.4 (RCS): S «+— SU{zi}, X «+ X\ {zx}, 0 + 0 —7n/qs.

Training epochs

» Step 2.5 (RCS): Repeat Step 2.2-2.3until | S| / | X |= k. - I I I I ] I

Warm up periods

« Step 3 (ACL training): Update parameters 6 <— 8 — nV gL acL(S; 0) RCS selection at every few epochs

e Step 4: Every I epochs, go to Step 2.1 to generate a new coreset; otherwise go to Step 3 to
update model parameters. The algorithm stops when reaches the final training epoch.
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Step 2.3 (RCS): Select a data x, whose gradient qx matches best with q, i.e.,

Theoretical analysis: agmaiga} Gie19)
greedy search has an optimality guarantee

* Proof sketch using a proxy set problem S* = argmax Gy(S) =

/Monotonluty \
Gz | X)=G(SU{z}) — G(S) > 0forany S C Xandz € X\ S

More data, better representation in terms of robustness

2. y"-submodularity---diminishing returns

1ol Gol@ | 4) > (1=)Go(z | B

where v* = 51— € (0,1)andA C BC X

More data have diminishing gains for learning /

erresentations

N-CRiPT Seminar Presentation by Xilie Xu

argmax Gg(S) + |S|o

SCX,|8|/1X|=k SCX,|S|/|X|=k

Proxy
coreset

Sv*

—)

(uaranteed lower bound of the original set\

problem using the proxy coreset

Go(5%) 2(G5 — (G5 + kNo) - ™" |

/ \

Proxy coreset selected  Guaranteed Lower bound
via greedy search based

on the proxy marginal
\&in Gtz |9 )
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Theoretical analysis:
greedy search has an optimality guarantee

* Proof sketch using a proxy set problem S*= argmax Gy(S) = argmax Gy(S)+|S|o

SCX,|S|/|X|=k SCX,|S|/|X|=k
Step 2.3 (RCS): Select a data x, whose gradient g matches best with g, i.e.,
argmax,{q qu}. Go(z|S) Go(S*) > Gy — (G5 + kNo) - e
Our greedy search via Approximate S* The proxy coreset provides

(the original marginal gain| mmmm=) the proxy marginal gain ===} ;o\ 5ranteed lower bound!

Go(z | S) = Go(SU{z}) — Go(S)
~ nVoLrp(U; 0 — nVeLacL(S;0)) ' VoLlacL({z};0) + o
EieTHhe,

Can be discarded since it is a constant
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Empirical Results

RCS is more efficient (higher speed-up ratio) compared to ACL on the entire set.

RCS is more effective (higher test accuracy) compared to random selection.

ALF on CIFAR-100 ALF on CIFAR-100 AFF on CIFAR-100 AFF on CIFAR-100

AN SLF on CIFAR-100 SLF on CIFAR-100 ,
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The upper-right (ours) is better!

Efficiency
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Empirical Results

For the first time to conduct ACL on ImageNet-1K using WRN-28-10

Table 1: Cross-task adversarial robustness transferability from ImageNet-1K to CIFAR-10.

Pre-training Runing time SLF ALF AFF
(hours) SA (%) RA (%) SA (%) RA (%) SA (%) RA (%)
Standard CL 147.4 84.36+0.17 0.01+001 10.00+0.00 10.00+000 86.63+0.12 49.71+o0.16
ACL on entire set 650.2 - - - - - -
ACL with Random 94.3 68.75+006 15.89+006 59.57+028 27.14+019 84.75+018 50.12+0.21
ACL with RCS 111.8 70.02+0.12  22.45+0.13 63.94+021 31.13+017 85.23+023 52.21+o0.14

Table 2: Cross-task adversarial robustness transferability from ImageNet-1K to CIFAR-100.

Pre-training Runing time SLF ALF AFF
(hours) SA (%) RA (%) SA (%) RA (%) SA (%) RA (%)
Standard CL 147.4 57.34+023 0.01+o001 9.32+001 0.06+0.01  61.33+0.12 25.11+0.15
ACL on entire set 650.2 - - - - - -
ACL with Random 94.3 38.53+0.15 10.50+0.13 28.44+023 11.93+021 59.63+033 25.46+0.26
ACL with RCS 111.8 40.28+0.17 14.55+010 33.15+026 14.89+0.16 60.25+0.18 28.24+0.13

We prove the possibility of applying ACL on large-scale datasets.
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Empirical Results

RCS for speeding up supervised adversarial training (SAT) on ImageNet-1K

while maintaining robustness transferability.

Table 17: Cross-task adversarial robustness transferability of adversarially pre-trained WRN-28-10
from ImageNet-1K to CIFAR-10. Here, “RA” stands for robust test accuracy under PGD-20 attacks
following the setting of Hendrycks et al. [54]. The number after the dash line denotes subset fraction
k € {0.05,0.1,0.2}.

Pre-training Runing time ALF AFF

(hours) SA (%) RA (%) SA (%) RA (%)
Standard training on entire set 66.7 10.12 10.04 84.73 51.91
SAT [54] on entire set 341.7 85.90 50.89 89.35 59.68
SAT with Random-0.05 53.6 69.59 31.58 85.55 53.53
SAT with RCS-0.05 68.6 79.72 44.44 87.99 56.87
SAT with Random-0.1 70.2 73.28 33.86 86.78 54.95
SAT with RCS-0.1 81.9 81.92 45.10 88.87 57.69
SAT with Random-0.2 103.4 75.46 39.62 86.64 56.46
SAT with RCS-0.2 121.9 83.94 46.88 89.54 58.13

RCS is also applicable to robust supervised pre-training!
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Motivation

* Limited robustness transferability to downstream tasks

How can we improve ACL's robustness transferability?

N-CRiPT Seminar Presentation by Xilie Xu
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Causal View of ACL

/Style Content N\
factor factor

e
@ @ Data generation @ @
u

procedure
/ J - \ / J

/ \/
Natural view @ @ The generation of adversarial
l data does not use labels.
Adversarial view @ S
Standard contrastive learning Adversarial contrastive learning
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Causal View of ACL

Target labels from an
unknown downstream task

@ @/

\

@ |

\/

The proxy label y &
the refinement of y,.

S

7 with yellow hair .

Standard contrastive learning

Data generation

/
procedure
L\

Proxy label y® Target label y,
Lo
%)‘L* Golden Retriever

'Y“ . Dog
Labrador Retriever /

_ with black hair

Learning procedure l

Adversarial contrastive learning
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Standard contrastive learning

Causal View of ACL

Data generation
procedure

Learning procedure

Adversarial contrastive learning



Causal View of ACL

~

’ ®
@ @ / Data generation @ @ / : \.\
\ procedure \@ \
%/ @) %/ O®)
X -

\‘
A . - A
! Learning procedure l .- i

Standard contrastive learning Adversarial contrastive learning

Style-invariant criterion: The intervention on the style factor should not affect the conditional probability

piolr)(yR | ) = pelri) (yR | ) ’



Adversarial Invariant Regularization (AIR)

* The conditional probability learned via ACL the mild assumption of Markov condition

p(y"|z) = p(y"|Z)p(Z|z)

L
¥
Vv
/// A
l .
|
olu—

Adversarial contrastive learning



Adversarial Invariant Regularization (AIR)

p(y"|x) = p(y"|2)p(Z|x)
» Style-independent criterion: The intervention on the style factor

should not affect the conditional probability 4 @\
do(7;) (,, R — ndo(75) (2R / ~\

p®(y* | ) = p® i (y* | z) @ @ .

\@\

MWAROY

V ~

O

Adversarial contrastive learning



Adversarial Invariant Regularization (AIR)

p(y"lx) = p(y"|Z)p(Z|x)

» Style-independent criterion: The intervention on the style factor
should not affect the conditional probability 4 @\
\

p®) (yF12)p® ) (&|z) = p®) (yR|Z)p™ ) (E|z) VT €T

Adversarial contrastive learning



Adversarial Invariant Regularization (AIR)

p(y"lx) = p(y"|Z)p(Z|x)

p®) (yF|&)p®) (&|z) = p®) (yR|2)p ) (F|w) Vr,T; €T

* Loss function of AIR -> to enforce style-independence
Lar(B;6,¢) = KL (p““’(”)(yRIfi’)ivdo(”)(ﬂ’ff’lfffi)IIJD“l"(”)(yR |&)p?°t) (&|z); B) g

Adversarial contrastive learning



Understanding of AIR

original view

Lar(B;0,¢€) C .
adversarial view _i

esim(fo (z),fo(2%))/t

$ esim(fe(wk)afe(fﬁ’zé))/t
T EB

p®(m) (yB|z) =

adversarial view_j

the self-consistency between
the original view and
the adversarial view under
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Understanding of AIR

pdo(n) (le

£AIR (Ba 0’ 6)

pd(’(”)(lefcr p?°() (%|x)

)
pdo(n) (iL’E\r

esim(fo (2%),fo(z))/t

p®m) (&|z) =

L €B

the self-consistency between
the adversarial view and

> eSim(fB (&%), fo(z}))/t

the natural view
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Understanding of AIR

. — do(Ti) (»,R|5\mdo(T:) (& do(T;) ()R 2\md0(T5) (2] ). )
Lamr(B;0,e) =KL (;D (y™*|Z)p (Z|z)||p (y™*|Z)p (Z|z); B original view

AIR enforces self-consistency
to be cross-consistent 4 — )

i . P (| )p " (@l |
under different augmentaty .
ﬁAm(B;e,e)\ \ e

p?°) (yB|3)p?3) (z|z)

N

natural view_i

adversarial view _i

natural view_j

the self-consistency

among the different views adversarial view_j
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Algorithm: Enhancing ACL via AIR

Algorithm 1 ACL with Adversarial Invariant Regularization (AIR)

1:

TR RS e IR

Input: Unlabeled training set U, total training epochs F, learning rate n, batch size (3, adversarial
budget € > 0, hyperparameters A\; and Ao

Output: Pre-trained representation extractor hyg
Initialize parameters of model fg = g o hyg
fore=0to £ —1do
for batchm = 1, ..., [|U|/B] do € > O:Reguloate robust
Sample a minibatch B,,, from U representations
Update 0 <— 0 —n-Vo ) . cp LacL(zk;0) +A1 - LAR(Bm; 0,0) + Aa - LAR(Bm; 0, €) ]
end for e = 0: Regulate standard
end for representations

N-CRiPT Seminar Presentation by Xilie Xu
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AIR achieves SOTA robustness transferability

Table 3: Cross-task adversarial robustness transferability. D; — Ds denotes pre-training and

finetuning are conducted on the dataset D; and D2 (# D, ), respectively.

D, »D Pre-trainin SLF ALF AFF

1 2 & AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)
ACL [26] 9.98+002 32.61+004 11.09+006 28.58+006 22.67+0.16 56.05+0.19
CIFAR-10 ACL-AIR 11.04+006 39.45+007 13.30+002 36.10+005 23.45+004 56.31+0.06
— CIFAR-100 | DynACL [33] | 11.01+002 27.66+003 11.92+005 24.14+009 24.17+010 55.61+0.17
DynACL-AIR | 12.20+004 31.33+003 12.70+003 28.70+005 24.82+007 57.00+0.13
ACL [26] 25.41+008 56.53+0.10 27.17+009 51.71+017 32.66+007 61.41+0.13
CIFAR-10 ACL-AIR 28.00+0.12 61.91+013 30.06+010 62.03+0.11 34.26+009 62.58+0.10
— STL-10 DynACL [33] | 28.52+009 52.45+010 29.13+013 49.53+017 35.25+015 63.29+0.18
DynACL-AIR | 29.88+004 54.59+012 31.24+006 57.14+009 35.66+005 63.74+0.12
ACL [26] 18.72+007 60.90+002 26.92+0.11 57.35+007 44.07+011 75.19+0.10
CIFAR-100 ACL-AIR 19.90+004 64.89+009 27.65+006 60.79+004 44.84+0.14 75.67+0.13
— CIFAR-10 | DynACL [33] | 25.23+012 59.12+010 28.92+010 56.09+0.14 47.40+023 77.92+0.18
DynACL-AIR | 25.63+007 59.83+t008 29.32+006 56.65+006 47.92+012 78.44+0.10
ACL [26] 21.774+007 46.19+005 24.46+009 45.40+012 28.76+007 56.16+0.13
CIFAR-100 ACL-AIR 22.44+004 51.52+002 26.55+006 53.24+009 30.40+008 58.45+0.11
— STL-10 DynACL [33] | 23.17+009 47.54+014 26.24+013 45.70+014 31.17+014 58.35+0.18
DynACL-AIR | 23.24+007 48.20+008 26.60+005 48.55+0.12 31.42+007 58.59+0.10
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AIR achieves SOTA robustness transferability

* Robustness transferability via automated robust fine-tuning

* AutolLoRa: an automated and parameter-free robust fine-tuning framework

Table 7: Cross-task adversarial robustness transferability evaluated via AutoLoRa [44]. D, — D,
denotes pre-training and finetuning are conducted on the dataset D; and D, (# D;), respectively.
“Diff” refers to the gap between the performance achieved by AutolL.oRa and that achieved by vanilla
finetuning (reported in Table 3).

Finetunin . . AutoLoRa [44] Diff
Di=Dy | e s | Pretraining | S0 NG AN @) SA ()

SLF DynACL [33] 30.18 54.23 +1.01 +1.82

DynACL-AIR | 30.48 56.56 +0.84 +0.72

CIFAR-10 ALF DynACL [33] 31.72 57.30 +2.13 +7.75
— STL-10 DynACL-AIR | 31.81 57.40 +0.57 +0.26
AFF DynACL [33] 35.51 64.16 +0.26 +0.63

DynACL-AIR | 35.88 64.25 +0.22 +0.51

SLF DynACL [33] 23.27 48.93 +0.10 +1.39

DynACL-AIR | 23.44 50.28 +0.20 +2.08

CIFAR-100 ALF DynACL [33] 26.53 48.56 +0.29 +2.86
— STL-10 DynACL-AIR | 26.89 49.02 +0.29 +0.47
AFF DynACL [33] 31.25 58.56 +0.08 +0.06

DynACL-AIR | 31.57 58.65 +0.15 +0.21

Xu, Xilie, Jingfeng Zhang, and Mohan Kankanhalli. "Autolora: A parameter-free N-CRiPT Seminar Presentation by Xilie Xu

automated robust fine-tuning framework." arXiv preprint arXiv:2310.01818 (2023).



Al

R ranks First in RobustSSL Benchmark

Standard Linear Fine-Tuning (SLF)

Vanilla Fine-Tuning

Rank Paper Venue Robust Corruption Standard
Accuracy  Accuracy  Accuracy
1 Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization NeurIPS 2023 46.99 72.11 81.80
*Using post-processing
2 Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning ICLR 2023 46.54 71.96 79.82
*Using post-processing
3 Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization NeurIPS 2023 45.17 70.51 78.08
4 Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning ICLR 2023 45.09 68.67 7541
5 Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection NeurIPS 2023 4429 69.56 77.14
6 Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness ECCV 2022 43.27 73.06 79.94
7 ‘When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? NeurIPS 2021 43.18 73.14 82.36
"Using ImageNet-1K pre-trained models
8 Adversarial Contrastive Learning via Asymmetric InfoNCE ECCV 2022 42.72 74.09 83.70
*Using ImageNet- 1K pre-trained models
9 Robust Pre-Training by Adversarial Contrastive Learning NeurIPS 2020 39.17 70.72 7822
10 Adversarial Self-Supervised Contrastive Learning NeurIPS 2020 26.12 - 77.90
Adversarial Linear Fine-Tuning (ALF) Vanilla Fine-Tuning
Rank Paper Venue Robust Corruption Standard
Accuracy  Accuracy  Accuracy
1 Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization NeurIPS 2023 48.23 71.74 79.56
*Using post-processing
2 Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning ICLR 2023 4798 70.89 78.81
*Using post-processing
3 Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization NeurIPS 2023 46.14 69.97 7742
4 Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection NeurIPS 2023 45.75 67.84 74.95
5 Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning ICLR 2023 45.67 66.69 7297
6 When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? NeurIPS 2021 44.05 71.50 80.04
*Using ImageNet-1K pre-trained models
7 Adbversarial Contrastive Learning via Asymmetric InfoNCE ECCV 2022 4328 71.61 80.30
‘Using ImageNet-1K pre-trained models
Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness ECCV 2022 41.99 71.66 77.71
9 Robust Pre-Training by Adversarial Contrastive Learning NeurIPS 2020 40.60 68.56 7553
10 Adbversarial Self-Supervised Contrastive Learning NeurIPS 2020 29.69 - 75.62
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Robust Self-Supervised Learning
(RobustSSL) Benchmark

https://robustssl.github.io
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Thank you for your attention!

* Summary
* With RCS and AIR, we can efficiently build effective robust foundation models!

Potential future directions
* Explore the potential applications of ACL in various CV, NLP, and multi-modal tasks.
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