Towards Robust Foundation Models

Efficient and Effective Adversarial Contrastive Learning

Xilie Xu

Ph.D. student, School of Computing, NUS

28th Nov 2023

Advisor: Prof. Mohan Kankanhalli

Towards Robust Foundation Models

Efficient and Effective Adversarial Contrastive Learning

Foundation Model

Foundation Model

Towards Robust Foundation Models

Efficient and Effective Adversarial Contrastive Learning

Security Risk---Adversarial Attack

Image from https://gradientscience.org/intro_adversarial/

Security Risk---Adversarial Attack

Potential security risks when applying foundation models to safety-critical tasks

Medical diagnosis

[Henrya et al., ArXiv 2022]

Traffic sign recognition

Human: 100.0 % stop sign Machine: 99.7 % stop sign Human: 100.0 % stop sign Machine: 0.9 % stop sign

Image from https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.itm-p.com%2Fprotect-iot-applications-from-adversarial-evasion-

Risks Urge Robust Foundation Models

Robust foundation models should:

- 1. be generalizable to downstream tasks;
- 2. be robust against adversarial attacks.

Risks Urge Robust Foundation Models

Robust foundation models should:

- 1. be generalizable to downstream tasks;
- 2. be robust against adversarial attacks.

Adversarial Contrastive Learning (ACL)

Adversarial Contrastive Learning (ACL)

Towards Robust Foundation Models

Efficient and Effective Adversarial Contrastive Learning

Motivation: ACL is inefficient due to T PGD steps

ACL on the entire training set is extremely time-consuming.

- CIFAR-10: about 43 hours
- ImageNet-1K: about 650 hours

Motivation: ACL is inefficient due to T PGD steps

ACL on the entire training set is extremely time-consuming.

- CIFAR-10: about 43 hours
- ImageNet-1K: about 650 hours

How can we speed up ACL?

Robustness-Aware Coreset Selection (RCS)

- Intuitive idea: Find an informative training subset (called "coreset")
 - Decreasing the number of training samples
 - Guaranteeing the model to effectively learn robust representations

N-CRiPT Seminar Presentation by Xilie Xu

Image from https://medium.com/analytics-vidhya/sampling-statistical-approach-in-machine-learning-4903c40ebf86

Robustness-Aware Coreset Selection (RCS)

- Intuitive idea: Find an informative training subset (called "coreset")
- Objective function of RCS

Robustness-Aware Coreset Selection (RCS)

- Intuitive idea: Find an informative training subset (called "coreset")
- Objective function of RCS

Transform into a problem of maximizing a set function subject to a constraint on the size of the set

RCS via greedy search

RCS greedily finds and adds the data which has the

• Step 1 (Warm up): Warm up training on entire training set to find a better starting point $f_{ heta}$.

• Step 1 (Warm up): Warm up training on entire training set to find a better starting point $f_{ heta}$.

• Step 2.1 (RCS): $S \leftarrow \emptyset$. $heta' \leftarrow heta$. Compute gradients

 $Q \leftarrow \{q_k =
abla_ heta \mathcal{L}_{ ext{ACL}}(x_k; heta) \mid orall x_k \in X\}$ on unlabeled training dataset X.

• Step 2.2 (RCS): Compute gradients $q_U \leftarrow
abla_{ extsf{RD}}(U; heta')$ on unlabeled validation dataset U.

- Step 2.3 (RCS): Select a data x_k , whose gradient q_k matches best with q_U , i.e., $rg\max_k\{q_k^ op q_U\}$. $G_ heta(x\mid S)$

- Step 2.4 (RCS): $S \leftarrow S \cup \{x_k\}$, $X \leftarrow X \setminus \{x_k\}$, $heta' \leftarrow heta' \eta' q_k$.
- Step 2.5 (RCS): Repeat Step 2.2-2.3 until $\mid S \mid / \mid X \mid = k$.

• Step 1 (Warm up): Warm up training on entire training set to find a better starting point $f_{ heta}$.

• Step 2.1 (RCS): $S \leftarrow \emptyset$. $\theta' \leftarrow \theta$. Compute gradients

 $Q \leftarrow \{q_k =
abla_ heta \mathcal{L}_{ ext{ACL}}(x_k; heta) \mid orall x_k \in X\}$ on unlabeled training dataset X.

• Step 2.2 (RCS): Compute gradients $q_U \leftarrow
abla_{ extsf{RD}}(U; heta')$ on unlabeled validation dataset U.

- Step 2.3 (RCS): Select a data x_k , whose gradient q_k matches best with q_U , i.e., $rg\max_k\{q_k^ op q_U\}$. $G_ heta(x\mid S)$
- Step 2.4 (RCS): $S \leftarrow S \cup \{x_k\}$, $X \leftarrow X \setminus \{x_k\}$, $heta' \leftarrow heta' \eta' q_k$.
- Step 2.5 (RCS): Repeat Step 2.2-2.3 until $\mid S \mid / \mid X \mid = k$.
- Step 3 (ACL training): Update parameters $heta \leftarrow heta \eta
 abla_{ heta} \mathcal{L}_{ ext{ACL}}(S; heta)$

• Step 1 (Warm up): Warm up training on entire training set to find a better starting point $f_{ heta}$.

- Step 2.1 (RCS): $S \leftarrow \emptyset$. $\theta' \leftarrow \theta$. Compute gradients $Q \leftarrow \{q_k = \nabla_{\theta} \mathcal{L}_{ACL}(x_k; \theta) \mid \forall x_k \in X\}$ on unlabeled training dataset X.
- Step 2.2 (RCS): Compute gradients $q_U \leftarrow
 abla_{ extsf{RD}}(U; heta')$ on unlabeled validation dataset U.
- Step 2.3 (RCS): Select a data x_k , whose gradient q_k matches best with q_U , i.e., $rg\max_k\{q_k^ op q_U\}$. $G_ heta(x\mid S)$
- Step 2.4 (RCS): $S \leftarrow S \cup \{x_k\}$, $X \leftarrow X \setminus \{x_k\}$, $heta' \leftarrow heta' \eta' q_k$.
- Step 2.5 (RCS): Repeat Step 2.2-2.3 until $\mid S \mid / \mid X \mid = k$.
- Step 3 (ACL training): Update parameters $heta \leftarrow heta \eta
 abla_{ heta} \mathcal{L}_{ ext{ACL}}(S; heta)$
- Step 4: Every *I* epochs, go to Step 2.1 to generate a new coreset; otherwise go to Step 3 to update model parameters. The algorithm stops when reaches the final training epoch.

Whether the greedy search provide any optimality guarantee theoretically?

1. Monotonicity $\hat{G}(x \mid X) = \hat{G}(S \cup \{x\}) - \hat{G}(S) \geq 0$ for any $S \subseteq X$ and $x \in X \setminus S$.

More data, better representation in terms of robustness

2. γ^* -submodularity---diminishing returns

 $orall _{A,B\mid A\subset B} G_ heta(x\mid A) \geq (1-\gamma^*)G_ heta(x\mid B)$ where $\gamma^* = rac{1}{2 \sigma - 1} \in (0,1)$ and $A \subseteq B \subseteq X$.

More data have diminishing gains for learning representations

Step 2.3 (RCS): Select a data x_k , whose gradient q_k matches best with q_U , i.e.,

greedy search has an optimality guarantee $)+|S|\sigma$

 Proof s $S \subseteq X, |S|/|X| = k$ $S \subseteq X, |S|/|X| = k$

Theoretical analysis: $\arg \max_k \{q_k^\top q_U\}$. $G_{\theta}(x \mid S)$

sketch using a proxy set problem
$$\hat{S}^* = rg \max \ \hat{G}_ heta(S) = rg \max \ G_ heta(S)$$

Empirical Results

RCS is more efficient (higher speed-up ratio) compared to ACL on the entire set. RCS is more effective (higher test accuracy) compared to random selection.

Efficiency

The upper-right (ours) is better!

Empirical Results

For the first time to conduct ACL on ImageNet-1K using WRN-28-10

Due tusinin e	Runing time	SI	LF	ALF		AFF	
Pre-training	(hours)	SA (%)	RA (%)	SA (%)	RA (%)	SA (%)	RA (%)
Standard CL	147.4	84.36±0.17	$0.01 {\pm} 0.01$	10.00 ± 0.00	10.00 ± 0.00	86.63±0.12	$49.71{\scriptstyle\pm0.16}$
ACL on entire set	650.2	-	-	-	-	-	-
ACL with Random	94.3	68.75 ± 0.06	$15.89{\pm}0.06$	$59.57{\scriptstyle\pm0.28}$	$27.14{\scriptstyle \pm 0.19}$	$84.75{\scriptstyle\pm0.18}$	$50.12{\scriptstyle\pm0.21}$
ACL with RCS	111.8	$70.02{\pm}0.12$	22.45 ± 0.13	63.94 ± 0.21	$\textbf{31.13}{\scriptstyle \pm 0.17}$	$85.23{\scriptstyle\pm0.23}$	52.21 ± 0.14

Table 1: Cross-task adversarial robustness transferability from ImageNet-1K to CIFAR-10.

Table 2: Cross-task adversarial robustness transferability from ImageNet-1K to CIFAR-100.

				•	-			
Dro training	Runing time	SI	_F	7 ALF		AFF		
Fie-uanning	(hours)	SA (%)	RA (%)	SA (%)	RA (%)	SA (%)	RA (%)	
Standard CL	147.4	57.34 ±0.23	$0.01 {\pm} 0.01$	$9.32{\pm}0.01$	0.06 ± 0.01	61.33 ±0.12	25.11 ± 0.15	
ACL on entire set	650.2	-	-	-	-	-	-	
ACL with Random	94.3	38.53 ± 0.15	10.50 ± 0.13	$28.44{\scriptstyle\pm0.23}$	$11.93{\scriptstyle\pm0.21}$	$59.63{\scriptstyle\pm0.33}$	$25.46{\scriptstyle \pm 0.26}$	
ACL with RCS	111.8	40.28 ± 0.17	$14.55{\scriptstyle\pm0.10}$	$\textbf{33.15}{\scriptstyle \pm 0.26}$	$14.89{\scriptstyle\pm0.16}$	$60.25{\scriptstyle \pm 0.18}$	28.24 ± 0.13	

We prove the possibility of applying ACL on large-scale datasets.

Empirical Results

RCS for speeding up supervised adversarial training (SAT) on ImageNet-1K

while maintaining robustness transferability.

Table 17: Cross-task adversarial robustness transferability of adversarially pre-trained WRN-28-10 from ImageNet-1K to CIFAR-10. Here, "RA" stands for robust test accuracy under PGD-20 attacks following the setting of Hendrycks et al. [54]. The number after the dash line denotes subset fraction $k \in \{0.05, 0.1, 0.2\}$.

Dra training	Runing time	ALF		AFF		
Fle-training	(hours)	SA (%)	RA (%)	SA (%)	RA (%)	
Standard training on entire set	66.7	10.12	10.04	84.73	51.91	
SAT [54] on entire set	341.7	85.90	50.89	89.35	59.68	
SAT with Random-0.05	53.6	69.59	31.58	85.55	53.53	
SAT with RCS-0.05	68.6	79.72	44.44	87.99	56.87	
SAT with Random-0.1	70.2	73.28	33.86	86.78	54.95	
SAT with RCS-0.1	81.9	81.92	45.10	88.87	57.69	
SAT with Random-0.2	103.4	75.46	39.62	86.64	56.46	
SAT with RCS-0.2	121.9	83.94	46.88	89.54	58.13	

RCS is also applicable to robust supervised pre-training!

Towards Robust Foundation Models

Efficient and Effective Adversarial Contrastive Learning

Motivation

• *Limited robustness transferability* to downstream tasks

How can we improve ACL's robustness transferability?

Causal View of ACL

Causal View of ACL

Causal View of ACL

Style-invariant criterion: The intervention on the style factor should not affect the conditional probability

$$p^{\overline{do(au_i)}}(y^R \mid x) = p^{do(au_j)}(y^R \mid x)$$

• The conditional probability learned via ACL the mild assumption of Markov condition

 $p(y^R|x) = p(y^R|\tilde{x})p(\tilde{x}|x)$

Adversarial contrastive learning

- The conditional probability learned via ACL $p(y^R|x) = p(y^R|\tilde{x})p(\tilde{x}|x)$
- Style-independent criterion: The intervention on the style factor should not affect the conditional probability

$$p^{do(au_i)}(y^R \mid x) = p^{do(au_j)}(y^R \mid x)$$

Adversarial contrastive learning

- The conditional probability learned via ACL $p(y^R|x) = p(y^R|\tilde{x})p(\tilde{x}|x)$
- Style-independent criterion: The intervention on the style factor should not affect the conditional probability

 $p^{do(\tau_i)}(y^R|\tilde{x})p^{do(\tau_i)}(\tilde{x}|x) = p^{do(\tau_j)}(y^R|\tilde{x})p^{do(\tau_j)}(\tilde{x}|x) \quad \forall \tau_i, \tau_j \in \mathcal{T}$

Adversarial contrastive learning

- The conditional probability learned via ACL $p(y^R|x) = p(y^R|\tilde{x})p(\tilde{x}|x)$
- Style-independent criterion: The intervention on the style factor should not affect the conditional probability

 $p^{do(\tau_i)}(y^R|\tilde{x})p^{do(\tau_i)}(\tilde{x}|x) = p^{do(\tau_j)}(y^R|\tilde{x})p^{do(\tau_j)}(\tilde{x}|x) \quad \forall \tau_i, \tau_j \in \mathcal{T}$

Loss function of AIR -> to enforce style-independence

 $\mathcal{L}_{AIR}(B;\theta,\epsilon) = \mathrm{KL}\left(p^{do(\tau_i)}(y^R|\tilde{x})p^{do(\tau_i)}(\tilde{x}|x) \| p^{do(\tau_j)}(y^R|\tilde{x})p^{do(\tau_j)}(\tilde{x}|x);B\right)$

Adversarial contrastive learning

Understanding of AIR

Understanding of AIR

 x_k

Understanding of AIR

Algorithm: Enhancing ACL via AIR

Algorithm 1 ACL with Adversarial Invariant Regularization (AIR)

- Input: Unlabeled training set U, total training epochs E, learning rate η, batch size β, adversarial budget ε > 0, hyperparameters λ₁ and λ₂
- 2: **Output:** Pre-trained representation extractor h_{θ}
- 3: Initialize parameters of model $f_{\theta} = g \circ h_{\theta}$
- 4: for e = 0 to E 1 do
- 5: for batch $m = 1, \ldots, \lceil |U|/\beta \rceil$ do
- 6: Sample a minibatch B_m from U

Update $\theta \leftarrow \theta - \eta \cdot \nabla_{\theta} \sum_{x_k \in B_m} \ell_{ACL}(x_k; \theta) + \lambda_1 \cdot \mathcal{L}_{AIR}(B_m; \theta, 0) + \lambda_2 \cdot \mathcal{L}_{AIR}(B_m; \theta, \epsilon)$

- 8: **end for**
- 9: **end for**

7:

 $\epsilon = 0$: Regulate standard

 $\epsilon > 0$:Regulate robust

representations

AIR achieves SOTA robustness transferability

Table 3: Cross-task adversarial robustness transferability. $\mathcal{D}_1 \to \mathcal{D}_2$ denotes pre-training and finetuning are conducted on the dataset \mathcal{D}_1 and $\mathcal{D}_2 \neq \mathcal{D}_1$), respectively.

	Dra training	SLF		ALF		AFF	
$\nu_1 \rightarrow \nu_2$	Fie-maining	AA (%)	SA (%)	AA (%)	SA (%)	AA (%)	SA (%)
	ACL [26]	9.98 ± 0.02	32.61 ± 0.04	11.09 ± 0.06	$28.58{\scriptstyle\pm0.06}$	$22.67{\scriptstyle\pm0.16}$	$56.05{\scriptstyle\pm0.19}$
CIFAR-10	ACL-AIR	11.04 ± 0.06	$\textbf{39.45}{\scriptstyle \pm 0.07}$	$13.30{\scriptstyle\pm0.02}$	$\textbf{36.10}{\scriptstyle \pm 0.05}$	23.45 ± 0.04	$56.31{\scriptstyle \pm 0.06}$
\rightarrow CIFAR-100	DynACL [33]	11.01 ± 0.02	27.66 ± 0.03	11.92 ± 0.05	24.14 ± 0.09	$24.17{\scriptstyle\pm0.10}$	55.61 ± 0.17
	DynACL-AIR	12.20 ±0.04	$\textbf{31.33}{\scriptstyle \pm 0.03}$	$12.70{\scriptstyle\pm0.03}$	$\textbf{28.70}{\scriptstyle \pm 0.05}$	$24.82{\scriptstyle \pm 0.07}$	57.00 ±0.13
	ACL [26]	25.41 ± 0.08	56.53±0.10	27.17 ± 0.09	51.71±0.17	32.66 ± 0.07	61.41±0.13
CIFAR-10	ACL-AIR	28.00 ±0.12	61.91 ±0.13	$\textbf{30.06}{\scriptstyle \pm 0.10}$	62.03 ± 0.11	$\textbf{34.26}{\scriptstyle \pm 0.09}$	62.58±0.10
\rightarrow STL-10	DynACL [33]	28.52 ± 0.09	$52.45{\scriptstyle\pm0.10}$	29.13 ± 0.13	$49.53{\scriptstyle \pm 0.17}$	35.25 ± 0.15	$63.29{\scriptstyle\pm0.18}$
	DynACL-AIR	29.88 ±0.04	$\textbf{54.59}{\scriptstyle \pm 0.12}$	$31.24{\scriptstyle\pm0.06}$	$\textbf{57.14}{\scriptstyle \pm 0.09}$	$\textbf{35.66}{\scriptstyle \pm 0.05}$	63.74 ±0.12
	ACL [26]	18.72 ± 0.07	60.90 ± 0.02	$26.92{\scriptstyle\pm0.11}$	$57.35{\scriptstyle\pm0.07}$	44.07 ± 0.11	$75.19{\scriptstyle\pm0.10}$
CIFAR-100	ACL-AIR	19.90 ±0.04	64.89 ±0.09	$\textbf{27.65}{\scriptstyle \pm 0.06}$	60.79 ±0.04	44.84 ± 0.14	75.67±0.13
\rightarrow CIFAR-10	DynACL [33]	25.23 ± 0.12	59.12 ± 0.10	$28.92{\scriptstyle\pm0.10}$	$56.09{\scriptstyle\pm0.14}$	47.40 ± 0.23	$77.92{\scriptstyle\pm0.18}$
	DynACL-AIR	25.63 ±0.07	$59.83{\scriptstyle\pm0.08}$	29.32 ±0.06	$56.65{\scriptstyle\pm0.06}$	47.92±0.12	78.44±0.10
	ACL [26]	21.77 ± 0.07	$46.19{\scriptstyle\pm0.05}$	24.46 ± 0.09	45.40 ± 0.12	$28.76{\scriptstyle\pm0.07}$	56.16±0.13
$\begin{array}{l} \text{CIFAR-100} \\ \rightarrow \text{STL-10} \end{array}$	ACL-AIR	22.44 ±0.04	$51.52{\scriptstyle\pm0.02}$	$26.55{\scriptstyle\pm0.06}$	$\textbf{53.24}{\scriptstyle \pm 0.09}$	$\textbf{30.40}{\scriptstyle \pm 0.08}$	58.45 ± 0.11
	DynACL [33]	23.17 ± 0.09	$47.54{\scriptstyle\pm0.14}$	26.24 ± 0.13	45.70 ± 0.14	$31.17{\pm}0.14$	$58.35{\scriptstyle\pm0.18}$
	DynACL-AIR	23.24 ±0.07	$\textbf{48.20}{\scriptstyle \pm 0.08}$	$26.60{\scriptstyle \pm 0.05}$	$\textbf{48.55}{\scriptstyle \pm 0.12}$	$31.42{\scriptstyle \pm 0.07}$	$\textbf{58.59}{\scriptstyle \pm 0.10}$

AIR achieves SOTA robustness transferability

- Robustness transferability via automated robust fine-tuning
 - AutoLoRa: an automated and parameter-free robust fine-tuning framework

Table 7: Cross-task adversarial robustness transferability evaluated via AutoLoRa [44]. $\mathcal{D}_1 \rightarrow \mathcal{D}_2$ denotes pre-training and finetuning are conducted on the dataset \mathcal{D}_1 and $\mathcal{D}_2 \neq \mathcal{D}_1$), respectively. "Diff" refers to the gap between the performance achieved by AutoLoRa and that achieved by vanilla finetuning (reported in Table 3).

$\mathcal{D} \to \mathcal{D}$	Finetuning	Dra training	AutoLo	Ra [44]	Diff		
$\nu_1 \rightarrow \nu_2$	mode	Fie-uaining	AA (%)	SA (%)	AA (%)	SA (%)	
	SIE	DynACL [33]	30.18	54.23	+1.01	+1.82	
	SLI	DynACL-AIR	30.48	56.56	+0.84	+0.72	
CIFAR-10	ALE	DynACL [33]	31.72 57.30 +2	+2.13	+7.75		
\rightarrow STL-10	ALI	DynACL-AIR	31.81	57.40	+0.57	+0.26	
		DynACL [33]	35.51	5.51 64.16 +0.26	+0.26	+0.63	
	АГГ	DynACL-AIR	35.88	64.25	+0.22	+0.51	
	SIE	DynACL [33]	23.27	48.93	+0.10	+1.39	
	SLI	DynACL-AIR	23.44	50.28	+0.20	+2.08	
CIFAR-100		DynACL [33]	26.53	48.56	8.56 +0.29 +	+2.86	
\rightarrow STL-10	ALF	DynACL-AIR	26.89	49.02	+0.29	+0.47	
	AFE	DynACL [33]	31.25	58.56	+0.08	+0.06	
	АГГ	DynACL-AIR	31.57	58.65	+0.15	+0.21	

Xu, Xilie, Jingfeng Zhang, and Mohan Kankanhalli. "Autolora: A parameter-free automated robust fine-tuning framework." *arXiv preprint arXiv:2310.01818* (2023).

AIR ranks First in RobustSSL Benchmark

	Standard Linear Fine-Tuning (SLF)		V	anilla Fine-Tu	ning
Rank	Paper	Venue	Robust Accuracy	Corruption Accuracy	Standard Accuracy
1	Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization *Using post-processing	NeurIPS 2023	46.99	72.11	81.80
2	Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning *Using post-processing	ICLR 2023	46.54	71.96	79.82
3	Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization	NeurIPS 2023	45.17	70.51	78.08
4	Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning	ICLR 2023	45.09	68.67	75.41
5	Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection	NeurIPS 2023	44.29	69.56	77.14
6	Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness	ECCV 2022	43.27	73.06	79.94
7	When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? *Using ImageNet-1K pre-trained models	NeurIPS 2021	43.18	73.14	82.36
8	Adversarial Contrastive Learning via Asymmetric InfoNCE *Using ImageNet-1K pre-trained models	ECCV 2022	42.72	74.09	83.70
9	Robust Pre-Training by Adversarial Contrastive Learning	NeurIPS 2020	39.17	70.72	78.22
10	Adversarial Self-Supervised Contrastive Learning	NeurIPS 2020	26.12	-	77.90
	Adversarial Linear Fine-Tuning (ALF)		V	anilla Fine-Tu	ning
Rank	Paper	Venue	Robust	Corruption	Standard

			Accuracy	Accuracy	Accuracy
1	Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization *Using post-processing	NeurIPS 2023	48.23	71.74	79.56
2	Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning *Using post-processing	ICLR 2023	47.98	70.89	78.81
3	Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization	NeurIPS 2023	46.14	69.97	77.42
4	Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection	NeurIPS 2023	45.75	67.84	74.95
5	Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning	ICLR 2023	45.67	66.69	72.97
6	When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? *Using ImageNet-1K pre-trained models	NeurIPS 2021	44.05	71.50	80.04
7	Adversarial Contrastive Learning via Asymmetric InfoNCE *Using ImageNet-1K pre-trained models	ECCV 2022	43.28	71.61	80.30
8	Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness	ECCV 2022	41.99	71.66	77.71
9	Robust Pre-Training by Adversarial Contrastive Learning	NeurIPS 2020	40.60	68.56	75.53
10	Adversarial Self-Supervised Contrastive Learning	NeurIPS 2020	29.69	-	75.62

Robust Self-Supervised Learning (RobustSSL) Benchmark

https://robustssl.github.io

Thank you for your attention!

- Summary
 - With RCS and AIR, we can efficiently build effective robust foundation models!
- Potential future directions
 - Explore the potential applications of ACL in various CV, NLP, and multi-modal tasks.

• References

- 1. Xu, Xilie, Jingfeng Zhang, Feng Liu, Masashi Sugiyama, and Mohan Kankanhalli. "Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection." NeurIPS 2023 (spotlight).
- 2. Xu, Xilie, Jingfeng Zhang, Feng Liu, Masashi Sugiyama, and Mohan Kankanhalli. "Enhancing Adversarial Contrastive Learning via Adversarial Invariant Regularization." NeurIPS 2023.
- 3. Xu, Xilie, Jingfeng Zhang, and Mohan Kankanhalli. "Autolora: A parameter-free automated robust fine-tuning framework." arXiv preprint arXiv:2310.01818 (2023).
- Q&A